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Abstract
Background  In gut ecosystems, there is a complex interplay of biotic and abiotic interactions that decide the overall 
fitness of an individual. Divulging the microbe-microbe and microbe-host interactions may lead to better strategies 
in disease management, as microbes rarely act in isolation. Network inference for microbial communities is often a 
challenging task limited by both analytical assumptions as well as experimental approaches. Even after the network 
topologies are obtained, identification of important nodes within the context of underlying disease aetiology remains 
a convoluted task. We therefore present a network perspective on complex interactions in gut microbial profiles of 
individuals who have multiple sclerosis with and without Mycobacterium avium subspecies paratuberculosis (MAP) 
infection. Our exposé is guided by recent advancements in network-wide statistical measures that identify the 
keystone nodes. We have utilised several centrality measures, including a recently published metric, Integrated View 
of Influence (IVI), that is robust against biases.

Results  The ecological networks were generated on microbial abundance data (n = 69 samples) utilising 16 S 
rRNA amplification. Using SPIEC-EASI, a sparse inverse covariance estimation approach, we have obtained networks 
separately for MAP positive (+), MAP negative (-) and healthy controls (as a baseline). Using IVI metric, we identified 
top 20 keystone nodes and regressed them against covariates of interest using a generalised linear latent variable 
model. Our analyses suggest Eisenbergiella to be of pivotal importance in MS irrespective of MAP infection. For 
MAP + cohort, Pyarmidobacter, and Peptoclostridium were predominately the most influential genera, also hinting at 
an infection model similar to those observed in Inflammatory Bowel Diseases (IBDs). In MAP- cohort, on the other 
hand, Coprostanoligenes group was the most influential genera that reduces cholesterol and supports the intestinal 
barrier.
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Background
Multiple sclerosis (MS) is a chronic inflammatory and 
neurodegenerative disorder [1] that affects brain and spi-
nal cord impacting around 2.5 million people worldwide 
[2]. The origin of demyelination and inflammation is not 
clear yet however interplay between environmental and 
genetic factors are known to develop MS [3, 4]. Growing 
literature on this topic highlights the role of gut micro-
biota as a strong environmental influencer in the MS 
context [5]. It is proposed that perturbations in the gut 
microbiota could stimulate proinflammatory responses 
that serve as additional mechanism in the pathogenesis 
of MS [6, 7]. On the other hand, several studies have 
linked Mycobacterium avium subspecies paratuberculo-
sis (MAP) infections with MS [8, 9]. MAP is a versatile 
intracellular parasite that colonizes intraepithelial macro-
phages in the mucosa-associated lymphoid tissue of the 
small intestine. It can induce chronic granulomatous gas-
troenteritis, known as John’s disease or paratuberculosis, 
in animals, especially ruminants [10]. Various molecular 
and serological tests have reported the presence of MAP 
in the blood of individuals with multifactorial diseases, 
including type 1 diabetes (T1D) [11, 12], Crohn’s disease 
(CD) [13], multiple sclerosis (MS) [8, 9] and Parkinson’s 
disease (PD) [14]. Molecular mimicry is known to be 
one of the potential mechanisms by which MAP triggers 
autoimmune diseases due to the structural similarity of 
MAP antigens to self-antigens [15]. Despite the extensive 
research conducted on the gut microbiota and MS there 
is hardly any study that identified microbes or their func-
tions linked to MS specially when infected by MAP.

In a complex microbial ecosystem, species rarely act 
alone. Either they strive for resources following a com-
petitive exclusion principle with one species outcom-
peting another, or they live in symbiosis, or there are 
predator-prey interactions. Recovery of both biotic and 
abiotic interactions then leads to understanding how 
stable the ecosystem is [16], with the network of interac-
tions able to reveal the important species functioning in 
the ecosystem. Typically, in microbial networks, through 
in situ analytical approaches, highly interacting nodes 
called hubs are identified [17]. In a previous study, iden-
tified hubs or keystone nodes were then later confirmed 
experimentally [18], and were deemed to be important. 
Furthermore, these inferential network-based approaches 
have found use in clinical applications. For example, in 
[19], highly connected hub species associated better with 

the clinical changes (as compared to highly abundant and 
prevalent species) in cystic fibrosis patients with chronic 
lung infections.

In general, once a network topology is obtained, net-
work-wide statistical measures such as centralities are 
calculated which, ascertain how central a node is within 
the expanse of a network. For example, Degree Central-
ity, Cluster Rank, Betweenness, Collective Influence, 
Network Neighborhood, and Local H-index are some 
centrality measures that can quantify the importance of 
nodes. Whilst each one of these on their own can serve 
to highlight a particular nuance, a more sophisticated 
approach that can simultaneously consider a set of cen-
trality measures covering local and global features of net-
work can offer better synergy by reducing biases inherent 
with some of the measures. For this purpose, a more 
sophisticated network-wide statistical measure called 
Integrated Value of Influence (IVI) [20] is proposed that 
uses six important centrality measures (as above) as 
building blocks to derive Hubness and Spreading scores 
eventually combining them to a single IVI measure. This 
single measure then enables recovery of the most impor-
tant topological characteristics of the network identify-
ing keystone nodes that have biological relevance with 
the measure robust against biases. The aim of this paper 
is to then to consolidate these recent advancements in 
network statistics to identify keystone nodes in multiple 
sclerosis patients with and without MAP infection. We 
then associate these keystone nodes with the anthropo-
metric and sociodemographic information. For associa-
tion, we utilize the Generalized Linear Latent Variable 
Model (GLLVM) [21] approach where the abundance 
of individual microbes is regressed against covariates of 
interest by also incorporating a small number of latent 
variables. The fitted beta coefficients through the GLLVM 
approach then gives directionality (positive or negative 
association) against the covariates of interest consolidat-
ing the clinical or environmental context under which 
the data is generated. However, fitting GLLVM against 
sources of variability when there are thousands of taxa, 
significantly more than the number of samples, is compu-
tationally challenging and impractical for larger datasets. 
IVI leverages this by ranking taxa in terms of their influ-
ence, thus allowing exploration of the top most influen-
tial nodes, enabling better convergence of the likelihood 
in the reduced space of the variables.

Conclusions  The identification of keystone nodes, their co-occurrences, and associations with the exposome (meta 
data) advances our understanding of biological interactions through which MAP infection shapes the microbiome in 
MS individuals, suggesting the link to the inflammatory process of IBDs. The associations presented in this study may 
lead to development of improved diagnostics and effective vaccines for the management of the disease.

Keywords  Multiple sclerosis, Gut microbiome, Network inference, Integrated value of influence



Page 3 of 12Ashraf et al. Gut Pathogens           (2024) 16:37 

Methods
Bioinformatics
Our previous study [22] provides a comprehensive over-
view of the study design, stool sampling, their processing, 
and bioinformatic analysis. In brief, this study involved 
comparative analysis of three distinct study groups; MS 
patients who tested positive for MAP infection (MAP+), 
MS patients who tested negative for MAP infection 
(MAP-) and a control group consisting of healthy indi-
viduals. Each participant provided two samples, labelled 
as T1 and T2 typically collected a month apart. A total 
of 97 individuals were screened for participation in this 
study at the Multiple Sclerosis Center of the University 
of Cagliari, Italy. The collected samples underwent 16 S 
rRNA amplicon sequencing using V3-V4 primer set on 
an Illumina MiSeq instrument. Out of the 97 stool sam-
ples collected from the participants, only 74 had pro-
vided a sufficient DNA yield for microbiome analyses. 
An additional 5 samples were excluded due to low read 
numbers (< 5000 reads), resulting in a total of 69 samples 
included in final analyses.

Network inference
We have used an OTU table of n = 69 x P = 16,787 OTUs 
(see [22]) where VSEARCH pipeline [23] was used to 
construct OTUs at 99% similarity threshold. The sum-
mary statistics of reads mapping to these OTUs for sam-
ples as follows: [Minimum: 5,074; 1st Quartile: 14,380; 
Median: 18,060; Mean: 20,634; 3rd Quartile: 22,651; 
Maximum: 96,572]. After obtaining the taxonomy of 
OTUs using SILVA SSU Ref NR database release v.138 
[24], the abundances of OTUs belonging to the same 
genus were collated together giving an n = 69 x P = 128 
dimensional genera table. Note that where the OTUs 
were not resolved at genus level, they were put in the “__
Unknown__” category. From the 69 samples, we inferred 
the network separately for Healthy Control (n = 24), 
MAP+ (n = 27), and MAP- (n = 18) cohorts. We have 
used the SPIEC-EASI [25] approach using the standard 
parameters in the function spiec.easi(abundance_table, 
method=’mb’, lambda.min.ratio = 1e-2, nlambda = 20, pul-
sar.params = list(rep.num = 50)), where abundance_table 
is the table extracted separately for Healthy Control 
(HC), MAP + and MAP- individuals.

Network wide statistics
Having obtained the network topology for all three 
cohorts (Healthy Control, MAP+, and MAP- MS 
patients), we have calculated several network wide statis-
tics using the R packages igraph [26], influential [20], and 
centiserve [27]. We have used the statistics given in Sup-
plementary Table S1, with comparative analyses of these 
statistics for different cohort given in Supplementary Fig-
ure S1 (Supplementary_Materials.docx).

Generalised Linear Latent Variable Model (GLLVM)
To find the relationship between most influential nodes 
[top 20 selected based on Integrated View of Influ-
ence (IVI) metric] and the sources of variation (Sex, 
Age, BMI, Time Points, Weight Change, Having Chil-
dren, Having Pets, Smoker, Work Routine, Sports, 
Leisure Time, Sleep Duration, Antibiotics, Sweet Con-
sumption, Drinking Water, Alcohol Consumption, Pro-
biotics Consumption, Stool Consistency, and Disease 
Duration [only available for MAP+, and MAP- cohort]), 
we have used Generalised Linear Latent Variable 
Model (GLLVM) [21] which extends the basic general-
ized linear model that regresses the mean abundances 
µij  (for i -th sample and j -th microbe) of individual 
microbes against environmental covariates xi  as above 
by incorporating latent variables (confounders) ui  as 
g (µij) = ηij = αi + β0j + xT

i βj + uT
i θj , where βj  are 

the microbe specific coefficients associated with individ-
ual covariate. A 95% confidence interval of βj  whether 
positive (increasing the abundance of microbe) or nega-
tive (decreasing the abundance of microbe), and not 
crossing 0 boundary gives directionality with respect to 
a particular covariate. θj  are the corresponding coeffi-
cients associated with latent variable. β0j  are microbes’ 
specific intercepts, whilst αi  are optional sample effects 
which can either be chosen as fixed effects or random 
effects (not used in this study). To model the distribution 
of individual microbes, we have used Negative Binomial 
distribution. Additionally, the approximation to the log-
likelihood is done through Variational Approximation 
(VA) with final sets of parameters in glvmm() function 
being family = ‘negative.binomial’, method="VA”, con-
trol.start=list(n.init = 7, jitter.var = 0.1) that converged the 
optimization algorithm associated with GLLVM for HC, 
MAP+ and MAP- cohort.

Results
Recovered keystone nodes vary between HC, MAP + and 
MAP- cohort
The networks of genera inferred for HC, MAP + and 
MAP- cohorts are shown in Figs.  1, 2 and 3 along with 
the statistics for top influential nodes. Although we have 
used several network wide metrics, we mainly empha-
sized on three strategies for the identification of key 
stone genera: (a) Spreading Score: which itself a combi-
nation of four metrics i.e., Neighbourhood connectivity 
(NC), Cluster rank (CR), Betweenness centrality (BC) 
and Collective influence (CI) that are used to identify the 
potential genera having higher spreading potential within 
the microbiome network. (b) Hubness Score: It is used 
to identify genera that have high centrality measures 
[(Degree centrality (DCi) and Local H-index (LHindex)] 
and (c) Integrated View of Influence (IVI): It integrates 
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both spreading and hubness score as a single metric and 
identifies microbial network most influential nodes.

We have taken a union of the top 20 nodes selected 
for either of the three metrics, Spreading Score, Hub-
ness Score, and IVI. These are shown in the left panels of 
Figs. 1, 2 and 3 and selected 25, 26, and 26 genera for HC, 
MAP+, and MAP- cohorts, respectively. Majority of the 
influential nodes belonged to the phylum Firmicutes (21 
for HC, 18 for MAP+, and 15 for MAP-) with the most 
influential nodes according to IVI being: Flavonifrac-
tor (HC); Pyramidobacter (MAP+); and [Eubacterium]_
coprostanoligenes_group (MAP-). Of all the influential 
nodes, Eggerthella and [Ruminococcus]_gnavus_group 
were selected for all three cohorts. Amongst other com-
mon nodes: GCA_900066575 (Lachnospiraceae) and 
Ruminococcus are common between HC and MAP+; Ery-
sipelatoclostridium, UCG_010 (Oscillospirales), Megamo-
nas, and Succinovibrio are common between HC and 
MAP-; and Eisenbergiella and Oscillibacter are common 
between MAP + and MAP-.

Supplementary Data Table S1 contains all interactions 
recovered for each cohort where, genera (top 5 for each 
cohort) that achieved very high IVI scores are highlighted 
along with their interacting secondary connections. 
These come out to be 14 unique genera with Eggerthella 
common between MAP + and HC cohort. Secondary 

connections of the top 5 IVI nodes that are common 
between MAP + and MAP- are Aldercreutzia, [Rumino-
coccus]_gnavus_group, Oscillobacter, and Acidaminococ-
cus. Secondary connections of the top 5 IVI nodes had a 
high degree of overlap between HC and MAP+, and these 
include Flavonifractor, [Clostridium]_innocuum_group, 
Eisenbergiella, Colidextribacter, and Ruminococcus.

Top 20 influential keystone nodes based on IVI and 
their relationship with the clinical parameters and the 
exposome
We then employed a GLLVM to regress the top 20 most 
influential genera against different sources of variation. 
These associations are shown in Figs. 4 and 5, and 6. The 
covariates include Sex, Age, BMI, Time Points, Weight 
Change, Having Children, Having Pets, Smoker, Work 
Routine, Sports, Leisure Time, Sleep Duration, Antibiotics, 
Sweet Consumption, Drinking Water, Alcohol Consump-
tion, Probiotics Consumption, Stool Consistency, and 
Disease Duration, with the information provided by the 
subjects at the time of sample collection.

There are some keystone nodes that are common 
across all cohorts. These include Ruminococcus genera 
in general, and also include [Ruminococcus]_gnavus_
group and Erysipelatoclostridium. Also, Eisenbergiella 
is the only genera which is influential in MS cohort, 

Fig. 1  Network inferred for HC samples using SPIEC-EASY algorithm for OTUs collated at genus level. The size of the nodes in the network corresponds to 
Integrated View of Influence scores whilst the nodes are colored at Phylum level. Left panel shows the top 20 important nodes along with their scores based 
on composite measure Integrated View of Influence, along with the Spreading Score and the Hubness Score. To improve clarity, bars of nodes that were not 
in top 20 list for a given metric were not drawn. These influential genera (n = 25) are then annotated on the network figure shown in the middle panel
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irrespective of MAP infection. For Eisenbergiella, using 
GLLVM, some of the covariates differ in their association 
between MAP + and MAP- cohort. These include Age, 
Probiotics consumptions (> 1 year,3–6 months), Sex(male), 
Sleep duration, Smoker, Stool consistency, Weight change 
(Loss), and Work routine (sitting) which are all positively 
associated with Eisenbergiella in MAP- individuals 
whilst they are negatively associated with Eisenbergiella 
in MAP + individuals. Also, drinking water > 2  L, Leisure 
time(normal), probiotics consumption(currently), sweet 
consumption 5–6 per week, and work routine (sedentary, 
standing) are negatively associated with Eisenbergiella for 
MAP- individuals and positively associated with Eisen-
bergiella for MAP + individuals.

To identify the important genera in the networks asso-
ciated with MAP+, MAP- and HCs, we have employed 
network-based statistics based on centrality, connectiv-
ity and hubness scores/strategies. Supplementary Figure 
S1 shows comparison of network-wide statistics among 
all the study cohorts. The statistics revealed that MAP- 
individuals have the highest IVI scores than MAP + and 
HCs. The trend is same in terms of Hubness score, Local 
H-index, Laplacian centrality, Spreading score and Geo-
desic K-path centrality. However, for the MAP + group, 
Neighborhood connectivity, Lin centrality and Latora 
closeness is highest as compared to the other cohorts. 

These measures suggest that in MAP + networks, micro-
bial genera are closer, central and have more connections 
to neighborhood genera as compared to the MAP- and 
HC cohorts.

Discussion
The human microbiome exhibits significant diversity in 
its composition, interconnections, and resilience both 
within and across individuals. Based on the intercon-
nectedness of microbes, our aim is to identify keystone 
microbes associated with diifferent clinical parameters. 
The “keystone” concept has its roots in microbial ecol-
ogy that designate a species with a significant role on 
community relative to its abundance. The concept has 
been extended to microbial abundance data where cer-
tain microbial species may play a crucial role in shaping 
the community structure and function. Although these 
species are few and far between, they have a markedly 
increased influence. Rahman and Schomberg et al., [28] 
elaborates on this further and utilized this approach in 
identifying important enzymes in microbial networks. 
Furthermore, their results highlighted high “between 
centrality” values relative to node degree as a means to 
identify “choke points” that play a significant role in car-
rying out fundamental metabolic conversions in bacteria 

Fig. 2  Network inferred for MAP + samples using SPIEC-EASY algorithm for OTUs collated at genus level. The size of the nodes in the network corresponds 
to Integrated View of Influence scores whilst the nodes are colored at Phylum level. Left panel shows the top 20 important nodes along with their scores 
based on composite measure Integrated View of Influence, along with the Spreading Score and the Hubness Score. To improve clarity, bars of nodes that 
were not in top 20 list for a given metric were not drawn. These influential genera (n = 26) are then annotated on the network figure shown in the middle 
panel
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and act as central hubs in metabolic networks influencing 
various interaction and pathways.

Using IVI, a composite approach built from several 
centrality measures, we identified the top 3 most influen-
tial nodes for MAP + cohort which are Pyramidobacter, 
Peptoclostridium, and Eggerthella. Eggerthella, a microbe 
associated with cysteine degradation [29] has been asso-
ciated with multiple sclerosis although its causal role is 
not fully established yet [30]. The genus Pyramidobacter 
comprises strains that are anaerobic, non-motile, asac-
charolytic bacilli producing acetic and isovaleric acids 
along with small quantities of propionic and isobutyric 
acids [31]. It is thought to enhance fiber degradation and 
may depend on thiamine to grow [32]. Though the direct 
link of Pyramidobacter with MS remains unclear, it was 
previously associated with 17-Hamilton Depression Rat-
ing Scale (HAMD-17) assessment [33].

The genera that are typically affected by thiamine sup-
plementation including those that were found impor-
tant for MAP + cohort include Erysipelotrichaceae, 
Lachnospiraceae, Selenomonas, Pyramidobacter, Chris-
tensenellaceae R7 and, Ruminococcaceae NK4A214. 
Pyramidobacter species are vital cellulolytic bacteria and 
produce acetate as the main fermentation product [34], 
the enhanced Pyramidobacter by thiamine could support 

the fiber degradation. Our findings of acetate produc-
ers implicated in MAP + cohort is in line with literature 
[35] where based on metabolomics, higher concentra-
tion of acetate is observed for MAP infection predomi-
nantly in males. It is worth noting that Peptoclostridium, 
a causative agent of diarrhea and colitis [36] adds another 
dimension to the complex interplay of microbial species 
in the gut. Its potential implications in MS individuals 
with MAP infection further adds credence to the asso-
ciation of Multiple Sclerosis (MS) with Inflammatory 
Bowel Disease (IBD) [37, 38] particularly Crohn’s disease 
and Ulcerative colitis. Additionally, genome wide asso-
ciation studies have revealed a shared risk locus between 
IBD and MS indicating a common underlying pathologi-
cal mechanism affecting both conditions [39]. Therefore, 
one would expect the microbial signature between MS 
and IBD to be similar. In individuals without MAP infec-
tion, there is abundance of Eubacterium coprostanolige-
nes, Megamonas Ruminococcus gnavus and, Alistipes. 
Eubacterium coprostanoligenes is known for its capability 
of transforming cholesterol to coprostanol [40]. It plays a 
major role in stimulating lactic acid metabolism toward 
the production of SCFAs, that support the intestinal bar-
rier [41]. This process also leads to secondary bile acids 
secretions which play a role in the balance between health 

Fig. 3  Network inferred for MAP- samples using SPIEC-EASY algorithm for OTUs collated at genus level. The size of the nodes in the network corresponds 
to Integrated View of Influence scores whilst the nodes are colored at Phylum level. Left panel shows the top 20 important nodes along with their scores 
based on composite measure Integrated View of Influence, along with the Spreading Score and the Hubness Score. To improve clarity, bars of nodes that 
were not in top 20 list for a given metric were not drawn. These 26 influential genera (after combining the results from all metrics) are then annotated on 
the network figure shown in the middle panel
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and disease particularly in association with inflammatory 
bowel disease [42]. Megamonas found to be increased in 
MS [43], which is also implicated in Amyotrophic lateral 
sclerosis (ALS) [44]. Alistipes are differentially abundant 
in RRMS (Relapse Remitting Multiple Sclerosis) [45] that 
signifies its potential in immune related responses. Rumi-
nococcus gnavus is known to produce a polysaccharide 
that induces TNFα production emphasizing its role in 
immune modulation [46].

In our study, we have also identified interaction within 
each cohort focusing on those genera with very high 
IVI scores. In MAP + cohort, a noticeable cooccurrence 

relationship occurs between the genera Murdochiella 
and Pyramidobacter. This observation is in line with a 
study conducted by Caudet et al. [47], which confirmed 
the higher relative abundance of these two species in 
a similar context. Similarly, Eubacterium eligens and 
Intestinimonas are identified as cooccurring species. 
Both are regarded as butyriciproducens that produce 
SCFA, especially butyric acid [48]. Interestingly, these 
species were stimulated in fermentations from patients 
with IBD [49]. Faecalibacterium and Intestinimonas has 
been considered as potential probiotics for treating and 
alleviating inflammatory bowel disease [50], although 

Fig. 4  𝜷− coefficients returned from GLLVM procedure for intrinsic covariates considered in this study, and the top 20 influential nodes returned for HC 
samples in Fig. 1 using IVI metric, with the complete results including extrinsic parameters shown in Supplementary Figure S2. Those coefficients which 
are positively associated with the microbial abundance of a particular genera are represented in red color whilst those that are negatively associated are 
represented with blue color, respectively. Non-significant associations, if any, are represented with the black color. For categorical variables, one level acts 
as a reference and is annotated with REF. Genera also found influential for MAP + and MAP- cohort are represented with red color, whilst those found in 
either of MAP- and MAP + cohort are represented with green and blue colors, respectively
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Intestinimonas could potentially increase in abun-
dance in animal models of inflammation [51]. Nonethe-
less, it’s important to consider potential complexities, 
as indicated by a study that found an inverse relation-
ship between Rikenellaceae and Pyramidobacter [52]. In 
MAP- individuals, Bifidobacterium and Alistipes were 
identified as cooccurring species, with this behavior also 
observed in individuals with Parkinson’s Disease [53]. 
The overlap of our observed co-occurrence patterns with 
other neurological conditions gives credence to network-
based approaches to understanding disease etiology.

Furthermore, we have also implemented GLLVM 
regression model to investigate the association of the 
keystone nodes with the covariates of interest. Nota-
bly, Eisenbergiella, a gram negative, non-motile, 
non-spore producing bacteria demonstrated distinct 
association with individuals characterized as MAP + and 
MAP- considering various covariates of interest. These 
covariates include Age, Probiotics consumptions (> 1 
year,3–6 months), Sex(male), Sleep duration, Smoker, 
Stool consistency, Weight change(Loss), and Work rou-
tine (sitting), Drinking water > 2 L, Leisure time(normal), 

Fig. 5  𝜷− coefficients returned from GLLVM procedure for intrinsic covariates considered in this study, and for the top 20 most influential nodes returned 
for MAP + samples in Fig. 2 using IVI metric, with the complete results including extrinsic parameters shown in Supplementary Figure S3. Those coef-
ficients which are positively associated with the microbial abundance of a particular genera are represented in red color whilst those that are negatively 
associated are represented with blue color, respectively. Non-significant associations, if any, are represented with the black color. For categorical variables, 
one level acts as a reference and is annotated with REF. Genera also found influential for HC and MAP- cohort are represented with red color, whilst those 
found in either of MAP- and HC cohort are represented with green and blue colors, respectively
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Fig. 6  𝜷− coefficients returned from GLLVM procedure for intrinsic covariates considered in this study, and for the top 20 most influential nodes returned 
for MAP- samples in Fig. 3 using IVI metric, with the complete results including extrinsic parameters shown in Supplementary Figure S4. Those coefficients 
which are positively associated with the microbial abundance of a particular genera are represented in red color whilst those that are negatively associ-
ated are represented with blue color, respectively. Non-significant associations, if any, are represented with the black color. For categorical variables, one 
level acts as a reference and is is annotated with REF. Genera also found influential for HC and MAP + cohort are represented with red color, whilst those 
found in either of HC and MAP + cohort are represented with blue color
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probiotics consumption(currently), sweet consumption 
5–6 per week, and work routine (sedentary, standing). Our 
findings suggests that modulation of Eisebergiella abun-
dance as a biocontrol agent can potentially be useful in 
clinical settings.

In conclusion, our research explores the complex 
microbial landscape for microbe-microbe interactions 
within individuals affected by multiple sclerosis (MS), 
with a specific focus on those with Mycobacterium avium 
subspecies paratuberculosis (MAP) infection. Incor-
porating genera identified through the IVI statistic led 
to interesting associations for both MAP + and MAP- 
groups. Particularly, Pyramidobacter, Peptoclostridium, 
and Eggerthella in the MAP + cohort, and their potential 
metabolic nuances may pave the way for development of 
therapeutic agents. The downstream GLLVM regression 
model further elucidated the association of Eisenbergiella 
with various covariates of interests, suggesting a potential 
link between its abundance and factors i.e., age, probiotic 
consumption, and lifestyle. However, our conclusions are 
drawn based on a limited sample size. Further research 
work including a larger cohort, with temporal sampling 
will unravel further associations between microbes that 
may have been missed in this study, and will lead to 
development of microbial modulation strategies that 
might have beneficial effects.
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